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The damage spreading of various growth models is described. The damage spreading distanceD of an initial
small perturbation grows astg with time t. In the ballistic deposition model and the restricted solid-on-solid
growth modelg is consistent with 1/z implying that D is proportional to the parallel correlation length
obtained from the usual surface scaling wherez is the dynamic critical exponent. The survival probability of
an initial perturbation decays with a power law as a function of time. For the larger curvature model, however,
the damage spreading distance grows much faster than the parallel correlation length. Possible implications of
the damage spreading idea to the Family model are discussed.@S1063-651X~96!10710-8#

PACS number~s!: 05.70.Ln, 68.55.2a, 68.35.Fx, 05.40.1j

The study of surface fluctuations on various growth mod-
els has become a very attractive area recently@1#. It is related
to the surface growth of a thin film on the vacuum deposition
such as the molecular beam epitaxy, where a beam of par-
ticles is normally incident on a flat substrate, and the random
stochastic noise is present in the impinging flux@2#. Since
the surface width of the nonequilibrium growth process fol-
lows a simple scaling form, most efforts have concentrated
on measuring the surface fluctuations. The surface widthW
is defined as the standard deviation of the surface height. In
a finite system of lateral sizeL, the widthW starting from a
flat substrate scales as@3#

W~ t !;ja. ~1!

j is the correlation length parallel to the substrate following

j~ t !;L f ~ t/Lz!

;t1/z, t!Lz ~2!

;L, t@Lz,

where the scaling functionf (x) is x1/z for x!1 and is con-
stant forx@1. The correlation length denotes how the sur-
face height correlations spread over the substrate. Combining
Eqs.~1! and~2! one obtains the scaling behavior ofW as@3#

W~ t !;ja

;tb, t!Lz ~3!

;La, t@Lz,

where the exponentsb andz are connected by the relation
zb5a.

On the other hand, much attention has focused on the
concept of damage spreading@4# in the Ising model recently
because the damage spreading is a possible method for ob-
taining correlation function. The interesting quantity is the

damage spreading distanceD which is the propagation dis-
tance of an initial small perturbation att50. Here, we apply
the damage spreading idea to various discrete growth prob-
lems and we investigate the relation between the correlation
length of the surface height and the propagation distance of
the perturbation. Our numerical simulation shows thatD is
proportional tot1/z for the ballistic deposition~BD! model
@5#, the restricted solid-on-solid~RSOS! model @6#, and the
Family model @7#. However, in the larger curvature~LC!
model @8#, D is larger thant1/z implying that the initial per-
turbation propagates faster than the correlation length.

We consider two systemsA and B and start from two
different initial conditions, which are the same except one
point atr 0. For example, the initial condition in systemA is
flat,

hA~r ,0!50, ~4!

for all positionr , whereh(r ,t) represents the surface height
at time t. In systemB, the initial condition is

hB~r ,0!50 for rÞr 0

5n for r5r 0 , ~5!

wheren is a small integer. In most of our simulation, we
choosen511. The only difference in the initial conditions
is that the systemB has a small bump atr 0. We allow the
surfaces in the two systems to evolve underthe same growth
rules and under the same sequence of random numbers.
Then, the surface configurations of them evolve differently
due to the different initial conditions. A damage site is de-
fined as the point where the surface heightshA(r ,t) and
hB(r ,t) are not the same. Since we are interested in the
propagation of the initial perturbation, we define the damage
spreading distance~or propagation distance! D as the maxi-
mum value among the distances between the damage sites
and the original pointr 0,

D5max$ur i2r 0u%, ~6!
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where max takes the maximum for anyr i in the damage
sites.

We consider four different growth models well known in
the literature@1#. For completeness, here we describe the
models briefly. The general growth algorithm is to select a
site randomly on a (d21)-dimensional substrate and the
next steps depend on the models.~a! The RSOS model: al-
low growth by one provided the nearest neighbor height dif-
ference is not larger than one in the configuration@6#. ~b! The
BD model: allow a particle to fall along a straight line per-
pendicular to the substrate, until it sticks to the nearest site of
the particle on the line or to the top of the column@5#. ~c!
The Family model@7# ~the LC model@8#!: the dropped par-
ticle can migrate to the lower height site~the larger curvature
site! among the nearest neighbor sites.

It is generally believed that these discrete growth models
are described by a continuum equation@9–12#

]h~x,t !

]t
5n2“

2h1l~“h!22n4“
4h1h~x,t !, ~7!

whereh(x,t) is anonconserved, uncorrelated random noise.
In the Family model and the LC model, the growth process is
conservative meaning that the growth process conserves the
total particles after deposition, which implies that evapora-
tion and the formation of void and overhangs are negligible.
Such a conserved growth process can be derived by a con-
served current equation (l50),

]h~x,t !

]t
52“• j ~x,t !1h~x,t ! ~8!

with the surface currentj ,

j ~x,t !52n2“h1n4“
3h. ~9!

For n450 andl50, it belongs to the Edwards and Wilkin-
son ~EW! diffusion equation@10# with a5(32d)/2 and
z52 on d21 substrate dimension. The Family model fol-
lows the EW universality class. Whenn250 andl50, it is
Mullin’s @11# linear equation, givinga5(52d)/2 and
z54, i.e.,b5(52d)/8. The LC model is a simple curvature

driven model described by Mullin’s equation@8#. If lÞ0,
the equation cannot be written in the form of Eq.~8! and it is
a nonconserved growth equation. Whenn450, the equation
becomes the well-studied Kardar-Parisi-Zhang~KPZ! equa-
tion @9#. Both the RSOS model and the BD model belong to
the KPZ universality class, wherez is 3/2 ind5111.

Following the growth rules, we deposit particles on the
two systemsA andB which have the different initial condi-
tions given in Eqs.~4! and ~5! with n51. We apply the
periodic boundary condition and use the same sequence of
random numbers for both systems. So the dropped particles
are deposited on the same position in bothA andB systems
provided that the local height configurations of them are the
same. Att50, the only damage site is atr 0, and then the
damage site can diffuse, annihilate itself, or create another
damage site on the nearest neighbors. If there exists any
damage sites att, we call it an‘‘active state’’ at that time. If
all the damage sites disappear at timetc , it becomes a‘‘dead
state.’’ The surface configurations of the two systems be-
come identical and they evolve the same way aftertc . There
is no further creation of a damage site from the dead state.
Hence we classify the surface configurations as either a dead
state or an active state. If the system falls into a dead state we
stop the run and start another run. The damage distance as a
function of time is measured by averaging over the active
states only.

We have simulated the models on a one-dimensional sub-
strate of lateral sizeL51000 with the given initial condi-
tions. All simulation results are averaged over 1000 indepen-
dent runs. The natural timet is defined as the number of
average Monte Carlo steps per site. The maximum time is
chosen as 1000 to maintain the condition thatD!L. In this
way the damage spreading distance has no finite system size
effect. By definitionD50 at t50 and we find thatD grows
with time following a power law:

D~ t !;tg. ~10!

The time evolutions of the damage distances averaged over
the active states for both the BD model and the RSOS model
are shown in Fig. 1. We get very nice power law behaviors

FIG. 1. The damage spreading distanceD as a function of time
in log-log plot for the RSOS model~bottom! and the BD model
~top! with n51. The dotted line is a guide line forg52/3.

FIG. 2. The survival probabilityP(t) as a function of time in
log-log plot for the RSOS model.
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of D following Eq. ~10!. From the log-log plot of the damage
distance against time we obtain the value of the exponent
g,

g50.6760.01, d5111 ~11!

for the both models. Thisg is in a good agreement with the
relation

g51/z ~12!

with the valuez53/2 of the KPZ class ind5111. Another
initial condition with n521 produces the same behavior
quantitatively. SoD is proportional to the correlation length
j.

Since the models are described by the nonconserved cur-
rent equation, a dead state can be developed with time. We
define the survival probabilityP(t) as

P~ t !5
@number of active states~ t !#

@number of total states~ t !#
~13!

at timet, where the number of total states is the sum of both
the active states and the dead states. Figure 2 shows the
power law dependence of the survival probability,
P(t);t2d for the RSOS model withd'2/3. The value of
d for the BD model remains the same. This power law be-
havior of the survival probability is similar to that of the
continuous absorbing transition@13#. The damage sites are
linked to each other and they form one connected cluster. We
also defineN(t) as the average number of the damage site
over all the states@14#. Then,N(t) should be proportional to
D(t)3P(t). Since the value ofd is very close tog, N(t)
remains almost constant after the initial transient regime
(t.40) as shown in Fig. 3.

In the conserved surface current models such as the LC
model or the Family model, the deposited particles remain
on the surface without overhangs or vacancies. Since the
total number of particles after deposition are conserved, the
number of particles in the systemB is always larger than that
of the systemA up ton. Therefore there are no dead states in
the conserved growth model. In the Family model, we get
g'0.5060.01 as shown in Fig. 4, again supporting the re-

lationg51/z with z52. Surprisingly, there is only one dam-
age site at all the time and the damage site~one more extra
particle in the systemB whenn51) behaves like a random
walk. The same behavior was observed even ind5211.
This supports that the Family model hasz52 independent of
the dimension. However, in the LC model, the number of the
damage sites is not always one. Actually it increases with
time. In contrast to the RSOS model, the damage sites are
not always connected to each other and they can form many
separated clusters. The averaged damage spreading distance
is shown in Fig. 4 for the LC model. At the beginning the
slope is around 0.67, then it keeps on growing and ap-
proaches one. The damage distance increases almost linearly
in time after the initial transient regime. Due to the growth
rules, the upper bound of theg is one in general. In the LC
model,z54 is well known and the correlation length grows
as t1/4 @8#. The initial perturbation propagates much faster
than the correlation length so that the propagation length of
the perturbation is not related to the correlation length in the
LC model. The similar behavior was observed in the Wolf
and Villian ~WV! model@15#. In the Family, BD, and RSOS
models, the growth rules depend on the height configuration
of the nearest neighbors. However, in the LC model the
growth algorithm depends on the height configurations of not
only the nearest neighbors but also the next nearest neigh-
bors. The damage propagation distance is a kind of the re-
sponse distance of the initial perturbation. The response
function is related to the correlation function by the fluctua-
tion dissipation theorem. A possible speculation on the rea-
son why the damage propagates faster than the correlation
length in the LC model is that the damage spreading distance
may be related to the small wavelength response function
due to the small initial perturbation. In the RSOS model the
damaged sites form one big cluster producing long wave-
length response, but in the LC model the damaged sites do
not make a big connected cluster. So the damage spreading
method may not always estimate the correlation length.

In summary, we have applied the damage spreading idea

FIG. 3. The average number of damage sitesN(t) as a function
of time in log-log plot for the RSOS model.

FIG. 4. The damage spreading distanceD as a function of time
in log-log plot for the Family~bottom! model and the LC~top!
model. The slope (5g) is around 0.5 for the Family model. How-
ever the slope increases with time and approaches one in the LC
model. The solid line is forg51 and the dotted line is for
g51/2.
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to various growth models and have measured the propaga-
tion distance of a small initial perturbation as a function of
time. The damage spreading method can separate the influ-
ence of the initial perturbation on the subsequent surface
growth. The measured damage spreading distance is propor-
tional to the parallel correlation length obtained from the
scaling form in both the Family model~EW class! and the
RSOS model~KPZ class!. So the damage spreading distance
in the dynamic growth models can be interpreted as the cor-
relation length of the surface height in the substrate direc-
tion. In contrast, for the LC model the propagation distance
is much larger than the correlation length. In general, the

damage spreading distance~the propagation distance! is not
always proportional to the correlation length. It is interesting
that the survival probability of the damage decays with
power law for the RSOS model, which is very similar to that
of continuous absorbing transition@13#.
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